Bridge analysis, design + assessment

Case studies - Major Bridges

LUSAS Bridge is used by engineers on major bridge projects worldwide.

These case studies show illustrative uses of the software, with the most recently added article at the top. Country flags relate to the project's location.


Dismantling of the San Francisco-Oakland Bay Bridge East Main Span

  • Dismantling of 1930s steel bridge trusses and cantilever spans as part of demolition phase 1 involving staged construction modelling of the existing structure incorporating all renovations made during its lifetime, and a detailed stage by stage demolition analysis using to ensure safe removal of the structure.

"By identifying and analyzing the critical steps in the planned dismantling sequence, LUSAS proved to be an invaluable tool in helping us to evaluate bridge stability and predict dismantling effects on a very large and complex structure."

Nathan Miller, Bridge Engineer, Foothills Bridge Co


West 7th Street Bridge

  • Design and analysis of what is believed to be the world's first precast network arch bridge, involving post-tensioning analysis, eigen buckling, nonlinear analysis and staged construction modelling.

"Once initial section sizing calculations had been performed, we then used LUSAS to analyse numerous post-tensioning layouts for a variety of construction stages... then, once a tendon layout that satisfied all stress limits had been found, strength checks were made and the tendon profile approved."

Dean Van Landuyt, Principal Engineer, Texas Department of Transportation


West Gate Bridge Upgrade

  • Strengthening of a major steel box girder bridge for additional traffic loading, by cantilever propping, internal stiffening, and post-tensioning; and management of construction loads.

"Having a single global shell model meant that there was no need to worry about specifying boundary conditions or applying suitable loading as would be required for looking at regions of the structure using separate localised models, and this was a big plus."

Peter Robinson, Project Engineer, Flint & Neill


Demolition of Paseo Bridge

  • Staged construction modelling of a self-anchored suspension bridge incorporating all renovations made to the structure during its lifetime and subsequent demolition analysis to ensure safe dismantling.

"Being able to construct and deconstruct a major nonlinear structure like the Paseo Bridge in a single analysis model was critical in the success of the demolition."

Dr David Byers, President, Genesis Structures


Mersey Gateway Bridge

  • Analysis of an illustrative design of a 3-tower cable stayed bridge using line beam modelling to investigate global effects and a staged construction analysis to prove the design.
Ramboll was appointed Lead Consultant and Project Manager by Halton Borough Council to carry out a route identification study and illustrative design for a new crossing of the River Mersey in the UK. To assist with its development of the proposed new bridge Gifford used LUSAS bridge analysis software to carry out analytical studies to prove its draft design.


Seismic analysis of viaduct substructures on the Dubai Metro

  • Modelling of concrete viaduct structures involving seismic analysis to AASHTO LRFD to derive design moments from seismic and modified BS 5400 load combinations for use with pile and pier design.

"The use of precast concrete elements for the deck and for key substructure components, and the use of LUSAS software to assist with our design process, all helped to ensure that the viaduct construction progressed as planned."

David A Smith, Regional Head of Bridge Engineering, Atkins


Cable stayed bridge over the River Labe at Nymburk

  • Detailed 3D modelling to analyse live load effects on a longitudinally prestressed extradosed bridge with good correlation being obtained with static and dynamic load tests.

"By using LUSAS on this project we obtained an accurate assessment of the deck displacements caused by the static and dead loads. The easy-to-use modelling capabilities and the re-use of previously defined load patterns helped enormously with this."

Václav Kvasnička, Consulting Engineer, Pontex Consulting Engineers Ltd.


Rail track interation analysis for the Honan high speed railway

  • Evaluation of induced rail stresses and track displacements on a 1.8km long viaduct structure from rail temperature, acceleration and braking loading.

"Correct modelling of the nonlinear behaviour of ballast, and of the interaction between the ballast and the rail track is not easy to do manually, so the LUSAS Rail Track analysis option, which handles this automatically, was very useful to us in this respect".

Mr Jeongil Kim, Engineering Manager, Saman Engineering


Deck segment analysis for the Yi Sun Sin Bridge

  • Linear static analysis and optimisation of steel box girder deck segments for what, when constructed was the 4th longest suspension bridge in the world.

Using LUSAS, all webs, flanges, ribs and other small members in the 6 metre long deck segment were modelled. From the detailed LUSAS analysis it was seen that the main structural behaviour was in the transverse direction, and, as result, it was seen that the initial diaphragm design needed to be strengthened.

Redesign of Estero Parkway Flyover

  • Steel box girder redesign of a two-span bridge resulting in large construction cost savings for the client.
"The use of LUSAS helped us meet our design deadline and to prove an alternative bridge design that will ultimately save the client a great deal of money in construction costs."

Craig Finley, President, Finley Engineering Group, Inc


Advancing Segmental Bridge Technology

  • Analysis and optimization of post-tensioned precast concrete bridge segments
"LUSAS Bridge has been a great tool for us on this project. It allowed us to produce a design that has major benefits for the client and contractor. We would recommend its use to others wanting to enhance their in-house design and analysis capabilities".

Craig Finley, President, Finley Engineering Group Inc.


Taiwan High Speed Railway
  • Pile-soil interaction modelling and automated model building for multi-modal spectral response analysis of viaduct structures

"The versatility of LUSAS Bridge coupled with the technical expertise within our Group helped produce an economical design for the extreme seismic performance criteria of the Taiwan project with its demanding programme and construction constraints."

Kandiah Kuhendran, Project Design Manager, FaberMaunsell


Wacker Drive - Phase 2 Reconstruction

  • Replacement of beyond-life viaduct with new biaxially post-tensioned, high performance concrete slab structure requiring vehicle load optimisation for irregularly supported deck

"Using the LUSAS Vehicle Load Optimization facility expedited the live load analyses for a highly repetitive task that would have otherwise been extremely time consuming."

Dr Ihab Darwish, Project Engineer, Alfred Benesch and Company


Mississippi River Bridge

  • Numerous detailed analyses including staged construction with creep and shrinkage analysis of what, if built, would have been the 5th longest cable stayed bridge in world
"Modjeski and Masters used LUSAS Bridge to assist with a number of global and local analyses of the structure because of the advanced 3D nonlinear, dynamics and staged construction facilities that it offers for this type of work."

Mustafa Inan Viaduct

  • Linear and nonlinear dynamic study of earthquake damaged structure for potential future earthquake.
"Gebze Institute of Technology, used LUSAS Bridge to study the effects of the earthquake on a number of the structures including a seismic assessment study of the Mustafa Inan viaduct."

Forsmo Bridge, Sweden

Forsmo Bridge

  • Assessment of a steel truss arch railway bridge using iterative model development from strain gauge results to assess Ultimate, Serviceability and Fatigue Limit States.
"Ramboll successfully used strain gauge measurements on the Forsmo Bridge in Sweden to fine-tune a LUSAS Bridge model prior to carrying-out an in-depth assessment of the structure for a proposed increase in freight train axle loading."

Newark High Speed Rail Bridge

  • Detailed dynamics analysis using Interactive Modal Dynamics techniques
"LUSAS Bridge analysis software was used to carry out detailed dynamic analysis for their client Railtrack London North Eastern. The Interactive Modal Dynamics (IMD) techniques used greatly reduced the time required to assess the dynamic response of the structure for numerous combinations of different moving train loads and speeds."

Storebaelt East Suspension Bridge

  • Modelling of suspension bridge construction process using nonlinear and dynamics analysis
LUSAS Bridge analysis software was used to provide advice and structural analysis on the construction of the bridge. Many static and dynamic geometrically nonlinear LUSAS analyses were undertaken during the engineering construction process.

Namdo Bridge

  • Linear static analysis to optimise arch/girder stiffener arrangement

"LUSAS is good at modelling this kind of problem. Its shell and solid elements are easy to use, and the ability to plot results on selected parts of the model allows us to check the stress levels in a very straightforward manner. This is one of the many benefits in using LUSAS on this and other projects".

Joonsang Son, Engineer, Sambo Engineering


Vasco da Gama bridge and approach viaducts

  • Pile/soil interaction and seismic analysis of a cable stayed road bridge and associated approach viaduct structures

Approach viaduct design for the Vasco da Gama bridge

  • Calculation of reinforcement quantities for prestressed concrete diaphragms under seismic loading

 

Find out more

LUSAS Bridge

Software products

Software selection

 


 

 

Software Information

  Bridge / Bridge plus
green_arrow.gif (94 bytes) Software overview
green_arrow.gif (94 bytes) Modelling in general
green_arrow.gif (94 bytes) Advanced elements, materials and solvers
green_arrow.gif (94 bytes) Load types and combinations
green_arrow.gif (94 bytes) Staged construction modelling
green_arrow.gif (94 bytes) Geotechnical / Soil-structure modelling
green_arrow.gif (94 bytes) Analysis and design
green_arrow.gif (94 bytes) Design code facilities
green_arrow.gif (94 bytes) Viewing results
green_arrow.gif (94 bytes) Software customisation

  Bridge LT
green_arrow.gif (94 bytes) Software overview

  Choosing software
green_arrow.gif (94 bytes) Software products
green_arrow.gif (94 bytes) LUSAS Bridge LT
green_arrow.gif (94 bytes) LUSAS Bridge
green_arrow.gif (94 bytes) LUSAS Bridge Plus
green_arrow.gif (94 bytes) Software selection
green_arrow.gif (94 bytes) Software options

green_arrow.gif (94 bytes) Videos
 
green_arrow.gif (94 bytes) Case studies

  Application areas
green_arrow.gif (94 bytes) Footbridge design
green_arrow.gif (94 bytes) Movable structures
green_arrow.gif (94 bytes) Rail solutions
green_arrow.gif (94 bytes) Arch bridges
green_arrow.gif (94 bytes) Major crossings
green_arrow.gif (94 bytes) Soil-Structure Interaction Modelling

  Additional information
green_arrow.gif (94 bytes) Linear and nonlinear buckling analysis
green_arrow.gif (94 bytes) Curved girder analysis
green_arrow.gif (94 bytes) Integral or jointless bridges
green_arrow.gif (94 bytes) Post-tensioning
green_arrow.gif (94 bytes) Concrete modelling
green_arrow.gif (94 bytes) Interactive Modal Dynamics
green_arrow.gif (94 bytes) LUSAS Programmable Interface (LPI)

  General information
green_arrow.gif (94 bytes) Hardware specification
green_arrow.gif (94 bytes) Licencing and Networking options
green_arrow.gif (94 bytes) Software prices
green_arrow.gif (94 bytes) Documentation
green_arrow.gif (94 bytes) Links page
 

Request information

 

 


innovative | flexible | trusted

LUSAS is a trademark and trading name of Finite Element Analysis Ltd. Copyright 1982 - 2022. Last modified: March 09, 2023 . Privacy policy. 
Any modelling, design and analysis capabilities described are dependent upon the LUSAS software product, version and option in use.